

TRANSMISSION, PTO and **REDUCER BODIES**

Gearboxes serve as powertrains. They can perform this power transmission function in line with the motion transmission of the gear wheels. Transmission parts that act as protectors for the safe performance of this process and against harmful elements that may come from external factors can be called transmission bodies.

It is preferable that the transmission bodies have strength-resistant, thermal-resistant, corrosion-resistant, shock-absorbing and oil-tight properties. In this regard, there are certain raw materials in the production of the transmission body.

Figure 1: KRD.28 Reducer body

Cast Iron

Cast iron, as a term, refers not only to a single material, but to a family of materials containing a significant amount of carbon and silicon, the main component of which is iron. The basic microstructural components of cast irons are the chemical and morphological forms formed by carbon and the continuous metal matrix in which carbon and/or carbide are dispersed. Cast irons contain microstructural components called graphite, carbide, ferrite, perlite, martensite, austenite and bainite. The presence of residual elements, the addition of alloy elements, the change in solidification behavior and the heat treatment applied after solidification enable the production of different types of cast iron with desired mechanical properties.

In the automotive industry, there are two types of cast iron materials commonly used in transmission and intermediate transmission bodies. These are;

1. Lamellar Graphite Cast Iron (GG)

It is a type of cast iron in which most of the carbon in its composition is in the form of free graphite sheets (lamellae) after solidification. Its surface has a sooty gray appearance when broken. This cast iron, which is brown in color due to graphite, is called lamellar graphite cast iron or GRAY CAST IRON.

The composition of gray cast iron includes carbon, silicon, manganese, phosphorus and sulfur, in addition to its main structure iron. These elements in its composition generally come from CRUDE IRON (pig). Sulfur is an undesirable element in gray cast iron. A small amount of phosphorus is useful.

Figure 2: Microstructure of lamellar graphite cast iron material

Lamellar graphite cast irons are frequently used in the automotive industry. It is as good as steel in terms of heat treatment applicability and strength properties.

Lamellar graphite cast irons are also grouped according to their chemical components and physical properties.

	DIN	EN		
Grade	GG25	EN-GJL-250		
comparable with	Meehanite GD250			
Standard	DIN 1691	EN 1561		
Alloy number	0.6025	EN-JL 1040		
Chemical composition			Mechar	ical properties
2	2,90 - 3,65			
Si	1,80 - 2,90		Rm	155 - 275
Mn	0,50 - 0,70		HB	160 - 250
5	0,10 max.			
P	0,30 max.			
kg/dm ³	ca. 7,2			
Characteristics	GG25 is the most	common flake cast iron g	rade. It offers a go	od combination of strength and wear resistance
				en mechanical characteristics and machinability
	Cast iron with flak	e graphite, predominant p	earlitic structure.	Heat treatment is not recommended.
	DIN	EN		
Grade	GG30	EN-GJL-300		
comparable with	Meehanite GB300			
Standard	DIN 1691	EN 1561		
Alloy number	0.6030	EN-JL 1050		
	0.0030	en je rojo		
Chemical composition			Mechar	iical properties
5	2,90 - 3,65			
Si	1,80 - 2,90		Rm	170 - 325
Mn	0,10 - 0,30		НВ	190 - 260
5	0,10 max.			
P	0,30 max.			
kg/dm ³	ca. 7,2			
Charactristics	Offers a higher we	ar resistance, strength an	d heat treatment r	esponse compared to GG20 and GG25 while
				finish. GG30 can be hardened by conventional
	methods to Rc 50	on the bar surface.		
	DIN	EN		
	DIN GG35	EN-GJL-350		
comparable with	DIN GG35 Meehanite GA350	EN-GJL-350		
comparable with Standard	DIN GG35 Meehanite GA350 DIN 1691	EN-GJL-350 EN 1561		
comparable with Standard	DIN GG35 Meehanite GA350	EN-GJL-350		
comparable with Standard Alloy number Chemical composition	DIN GG35 Meehanite GA350 DIN 1691	EN-GJL-350 EN 1561	Mechar	ical properties
comparable with Standard Alloy number Chemical composition	DIN GG35 Meehanite GA350 DIN 1691 0.6035 2,90 - 3,65	EN-GJL-350 EN 1561		ical properties
comparable with Standard Alloy number Chemical composition S Si	DIN GG35 Meehanite GA350 DIN 1691 0.6035 2,90 - 3,65 1,80 - 2,90	EN-GJL-350 EN 1561	Rm	210 - 375
comparable with Standard Alloy number Chemical composition Si Si Mn	DIN GG35 Meehanite GA350 DIN 1691 0.6035 2,90 - 3,65 1,80 - 2,90 0,50 - 0,70	EN-GJL-350 EN 1561		
Grade comparable with Standard Alloy number Chemical composition C Si Mn S	DIN GG35 Meehanite GA350 DIN 1691 0.6035 2,90 - 3,65 1,80 - 2,90	EN-GJL-350 EN 1561	Rm	210 - 375
comparable with Standard Alloy number Chemical composition C Si Mn	DIN GG35 Meehanite GA350 DIN 1691 0.6035 2,90 - 3,65 1,80 - 2,90 0,50 - 0,70	EN-GJL-350 EN 1561	Rm	210 - 375
comparable with Standard Alloy number Chemical composition C Si Mn S P	DIN GG35 Meehanite GA350 DIN 1691 0.6035 2,90 - 3,65 1,80 - 2,90 0,50 - 0,70 0,10 max. 0,30 max.	EN-GJL-350 EN 1561	Rm	210 - 375
comparable with Standard Alloy number Chemical composition Si Mn	DIN GG35 Meehanite GA350 DIN 1691 0.6035 2,90 - 3,65 1,80 - 2,90 0,50 - 0,70 0,10 max. 0,30 max. ca. 7,2	EN EN-GJL-350 EN 1561 EN-JL 1060	Rm HB	210 - 375

Figure 3: Comparison of lamellar graphite cast irons

As can be seen in Figure 3, there are different types of cast iron with lamella graphite. Lamellar graphite cast irons are named with coding system such as GG25, GG30, etc. Here, the 'GG' part in GG25 indicates that it is lamellar graphite cast iron, while the '25' part indicates that it is resistant to a tensile strength of 250 Mpa. It is observed that the corrosion and surface resistance properties improve as the numerical value increases. However, the cost also increases accordingly.

2. Spheroidal Graphite Cast Iron (GGG)

Spheroidal graphite cast iron is cast iron in which the graphite in its composition has a spherical shape. This cast iron is also called DUCTILE IRON. A small amount of Magnesium (Mg) or Cerium (Ce) is added to the molten cast iron to allow the carbon to change from a leafy lamella to a spherical shape. The shape of graphite sheets in gray cast irons is the main factor that reduces the strength, toughness and ductility of gray cast iron due to its cracking properties. This specially obtained cast iron is called spheroidal graphite cast iron due to its graphite structure.

Spheroidal graphite cast iron is used in various applications as a substitute for gray cast iron, cast steel and non-ferrous metal alloys. Spheroidal graphite cast irons are known as "nodular cast iron, ductile iron, fonte spheroidal graphite, kufelgrapfit gusseisen, spheregus" in many countries. Its name in Turkish standards is SPHEROIDAL GRAPHITE CAST IRON. Its abbreviation is "GGG". In another approach, Spheroidal graphite cast irons can be described as a more advanced form of lamellar graphite cast irons.

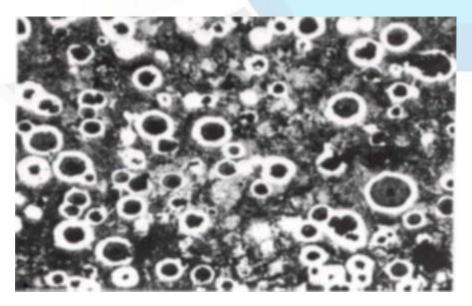


Figure 4: Microstructure of spheroidal graphite cast iron material

Spheroidal graphite cast irons can be used in applications where lamellar graphite cast irons may be insufficient. Especially in terms of strength, they are superior to lamellar graphite cast irons. Spheroidal graphite cast irons are divided into groups within each other, just like lamellar graphites.

	vith optimal impac Il grade (GGG40-3	400 250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
on used nodular cast iron nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 163	Rm Rp 0,2 As HB n. Nodular cast iro vith optimal impac Il grade (GGG40.3	400 250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
on used nodular cast iron nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 163	Rm Rp 0,2 As HB n. Nodular cast iro vith optimal impac Il grade (GGG40.3	400 250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
on used nodular cast iron nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 163	Rm Rp 0,2 As HB n. Nodular cast iro vith optimal impac Il grade (GGG40.3	400 250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	Rm Rp 0,2 As HB n. Nodular cast iro vith optimal impac Il grade (GGG40.3	400 250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	Rm Rp 0,2 As HB n. Nodular cast iro vith optimal impac Il grade (GGG40.3	400 250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	Rp 0,2 A5 HB	250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	Rp 0,2 A5 HB	250 15 130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	HB n. Nodular cast iro vith optimal impac al grade (GGG40.3	130-180 on has predominately a ferritic ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	n. Nodular cast iro vith optimal impac Il grade (GGG40.3	on has predominately a ferritic ct, fatigue, electrical conductivity and	_
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	vith optimal impac Il grade (GGG40-3	ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	vith optimal impac Il grade (GGG40-3	ct, fatigue, electrical conductivity and	
nachinability combined w use beneath o'C a specia y high inpacttest value. JS-500-7 .63	vith optimal impac Il grade (GGG40-3	ct, fatigue, electrical conductivity and	
use beneath o'C a specia y high inpacttest value. JS-500-7 163	ıl grade (GGG40.3		-
y high inpacttest value. JS-500-7 163		3 OF EN-GJC400-16-LT)	
JS-500-7 63			
,63			
,63			
1050			
	Machanical	operation	
	Mechanical pro	penes	
	Rm	500	
	Rp 0,2	500 320	
	Aş		
	HB	7	
cture. Offers higher wear	resistance, streng	gth and heat treatment response	
le still possessing reasor	nable machinabilit	ty and excellent surface finishing.	
IS-600-3			
63			
	Mechanical pro	operties	
	Rm	600	
	Rp 0,2	360	
	As	3	
	HB	200-260	
· · · · · ·	and the latter of		
	nachinability com	bined with higher wear resistance,	
n than 66650.			
JS-700-2			
1995-1999			
63			
1070			
	Mechanical pro	operties	
	Rm	700	
	Contraction of the second s	400	
	Rp 0,2	4	
	Aş	2	
	Aş	2	
ar makazint ata t	A5 HB	2	
1 55 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ile still possessing reason JS-600-3 563 S 1060 itic structure. Very good r on than GGG50. JJS-700-2 563	ucture. Offers higher wear resistance, stren iile still possessing reasonable machinabilit IJS-600-3 563 S 1060 Mechanical pro Rm Rp 0,2 AS HB itic structure. Very good machinability com on than GGG50.	acture. Offers higher wear resistance, strength and heat treatment response iile still possessing reasonable machinability and excellent surface finishing. IJS-600-3 S63 S 1060 Mechanical properties Rm 600 Rp 0,2 360 A5 3 HB 200-260 itic structure. Very good machinability combined with higher wear resistance, on than GGG50. IJS-700-2 S63

Figure 5: Comparison of spheroidal graphite cast irons

As can be seen in Figure 5, there are different types of spheroidal graphite cast iron varieties. Spheroidal graphite cast irons are named with coding system such as GGG40, GGG50, etc. Here, the 'GGG' part in GGG40 indicates that it is spheroidal graphite cast iron, while the '40' part indicates that it is resistant to a tensile strength of 400 Mpa. It is observed that the corrosion and surface resistance properties improve as the numerical value increases. However, the cost also increases accordingly.

In line with the properties given, it is seen that spheroidal graphite cast irons are more durable than lamellar graphite cast irons.

Table 1. Properties in cast-on test pieces

	cording to 93 Part 1	Ruling wall thickness of the casting	Thick- ness of cast-on test piece	Tensile strength <i>R</i> _m	0.2 % yield limit R _{p 0,2} 1)	Elon- gation at break A ₅	(DVM sp at –	l energy ²) pecimens) 20°C 4 individ- ual value	Reference data Structure
Symbol	Material number	mm	mm	N/mm ²	N/mm²	% min.		ule	
GGG-40.3	0.7043	from 30 to 60 over 60 to 200	40 70	390 370	250 240	15 12	14 12	11 9	predominantly ferritic
GGG-40	0.7040	from 30 to 60 over 60 to 200	40 70	390 370	250 240	15 12	-	-	predominantly ferritic
GGG-50	0.7050	from 30 to 60 over 60 to 200	40 70	450 420	300 290	7 5	-	-	ferritic/ pearlitic
GGG-603)	0.7060	from30 to 60 over 60 to 200	40 70	600 550	360 340	2 1	-	-	pearlitic/ ferritic
GGG-703)	0.7070	from30 to 60 over 60 to 200	40 70	700 650	400 380	2 1	-	-	predominantly pearlitic

 Instead of the 0.2 % yield limit it is permissible in the case of the ferritic grade to quote the yield point obtained from the testing machine diagram, due regard being paid to the more restricted process conditions compared with DIN 50 145, as referred to in the Explanations.

2) For other test temperatures the values for absorbed energy are to be agreed.

 Tensile strength and elongation are not guaranteed if minimum hardness values are specified for reasons of increased wear resistance.

Figure 6: Another approach to comparison of spheroidal graphite cast irons

Elements that Increase the Corrosion Resistance of Cast Irons

Corrosion is one of the most common types of problems encountered in metals. There are factors that increase corrosion resistance in the industry.

Chromium (Cr): In order to increase corrosion resistance and oxidation resistance, chromium can be added provided it does not exceed 35%.

Nickel (Ni): It has been found to increase corrosion resistance properties when used with Cr. Alloys containing 14% Ni and 1.5% Cr may be resistant to corrosion.

Silicon (Si): Silicon forms a protective SiO_2 layer on the surface, as it increases the passivation property of iron. This layer has protective properties against corrosion. A rate of 14% is recommended for Si.

Copper (Cu): Copper can also be used as an anti-corrosion agent, however, it is not preferred much due to its negative properties.

Aluminum Alloys

The first reason for using aluminum alloys is to reduce the weight of the transmission in the vehicle. However, its main disadvantage is that it is costly compared to gray cast iron. Aluminum alloys have better machinability properties compared to grey cast iron.

Another advantage of aluminum alloys is that their thermal conductivity is much higher compared to gray cast irons. This also prevents the internal components of the transmission from overheating.

In the selection of aluminum material for the transmission body, alloys differ from each other. These are;

ETINORM	ETIAL-110	ETIAL-120	ETIAL-140	ETIAL-141	ETIAL- 145	ETIAL-147	ETIAL-150	ETIAL-160
SPECIFIC GRAVITY (gr/cm ³)	2,76	2,68	2,66	2,66	2,69	2,76	2,67	2,76
MELTING RANGE (°C)	525-625	575-630	575-585	575-585	535-590	520-580	525-580	540-595
HEAT CONDUCTIVITY (cal/cm.s°C)	0,32	0,35	0,37	0,29	0,21	0,25	-	0,23
CORROSION RESISTANCE	MODERATE	VERY GOOD	VERY GOOD	VERY GOOD	GOOD	MODERATE	MODERATE	MODERATE
CASTABILITY	VERY GOOD	EXCELLENT	EXCELLENT	EXCELLENT	GOOD	GOOD	EXCELLENT	GOOD
MACHINABILITY	GOOD	MODERATE	MODERATE	MODERATE	GOOD	GOOD	GOOD	GOOD
ANODIC OXIDATION	Only on Surface	Protection						
OTHER PROPERTIES AND PLACES OF USE	Good Casting, Weldability Characteristic, Cylinder heads, crank covers of	Kitchenware, food handling equipment, marine fittings, various thin	Thin section and mixed castings, engine boxes, measurement boxes, pump	Mixed and thin walled pressurized castings.	Sand and mold castings, Castings, pistons and other	Mold castings, iron base.	Used in high- strength pressurized castings.	Used in pressurized casting parts requiring good surfaces.
	combustion engines.	section castings.	parts, marine atmosphere.		engine parts			

Figure 7: Physical and chemical properties of aluminum alloys

ETINORM	ETIAL-171	ETIAL-175	ETIAL-177	ETIAL-180	ETIAL-195	ETIAL-	ETIAL-221	ETIAL-509
SPECIFIC GRAVITY (gr/cm ³)	2,64	2,76	2,68	2,74	-	- 220	2,77	2,6
MELTING RANGE (°C)	575-595	520-580	-	570-525	-	-	541-647	520-620
HEAT CONDUCTIVITY (cal/cm.s ^o C)	0,27	0,25	0,38	0,24	-	-	0,35	0,24
CORROSION RESISTANCE	VERY GOOD	MODERATE	GOOD	GOOD	GOOD	BAD	BAD	EXCELLENT
CASTABILITY	EXCELLENT	GOOD	GOOD	GOOD	GOOD	BAD	BAD	GOOD
MACHINABILITY	MODERATE	GOOD	MODERATE	GOOD	GOOD	VERY GOOD	VERY GOOD	VERY GOOD
ANODIC OXIDATION	Only on Surface	Protection		·				
OTHER PROPERTIES AND PLACES OF USE	Strength casting properties, corrosion resistance, pressure sealing.	Resistant to hot crack, has very good fluidity. Used in pistons of internal combustion engines.	Used in pressurized seal rim production in automotive industry.	A general purpose alloy with a wide area of used. Used in pressurized castings.	Used in piston production and cylinder blocks of internal combustion engines.	Used in sand and mold castings and gearboxes.	Used in sand and mold castings, general engineering applications, airplanes.	Corrosion resistant casting kitchen and office machinery bodies, optical tools, decorative casting parts and press castings.

Figure 8: Physical and chemical properties of aluminum alloys (cont.)

Elements that Increase the Corrosion Resistance of Aluminum Alloys

As with cast irons, there are also elements that increase corrosion resistance of aluminum alloys. The difference of the construction material and the characteristic of the element added to the alloy are not always the same. For example, while chromium (Cr) has corrosion resistance enhancing properties in cast irons, the same cannot be observed in aluminum alloys.

	Fe	Si	Mg	Mn	Cu	Zn	Ti	Cr	Ni	Li	Zr	V	Sn	В	Bi	Pb	Remarks:
Density	1	↓	Ļ	1	1	1	1	1	1	Ļ	1	1	1	Ļ	1	1	Increase
Fluidity	Ļ	1	1	Ļ	Ļ	~	Ļ			•	•	•	-			•	increase
Hardening	1	1	1	$\uparrow\uparrow$	111	111	1	1	÷	•	-	•	¥	-		Ļ	Decrease
Resistance Frictional Res.*	1	1	1	1	††	111	11	•	t				t	1		•	~ Does not change
Electrical Cond.	Ļ	↓↓	₩	Ш	ţţ	Ļ	Щ	Щ	ţ	₩	↓↓	↓↓	-	111	-	•	_
Corrosion Strength	•	1	111	11	Ļ	Ļ		-	Ļ		-	•	Ļ	-	Ļ	Ļ	[*] Uncharacteristic or unknown
Thermal Expansion Factor	•	Ļ	Ļ	Ļ	Ļ	1	Ļ	ţ	Ļ	•	Ļ	ţ				•	Multiple arrows: Stronger impact

Figure 9: Contributions of the elements added to the aluminum alloy to the physical property

As seen in Figure 9, the elements Magnesium (Mg), Manganese (Mn) and Silicon (Si) have properties that increase corrosion resistance. However, there are some parameters to be considered when using these elements. For example, the element Silicon (Si), which is used to prevent corrosion, can also change other properties, and this may not always be desirable. Magnesium (Mg) is the most commonly used anti-corrosion element in aluminum alloys.

Aluminum Alloys with Magnesium

Aluminum has been used in transmissions and intermediate transmissions for about 50 years due to its resistance to high temperatures and its ability to endure mechanical stresses. Today, it has begun to replace cast iron. However, the aluminum body is 66% lighter than ones made of cast iron, while the magnesium alloy body is 75% lighter. In addition to being lighter, magnesium has high shock and collapse resistance. It also absorbs sound and vibration better than aluminum. This decrease in weight results in a decrease in fuel consumption and exhaust emissions.

The advantages of magnesium and magnesium alloys are as follows;

- It is the one with the lowest density among all metallic structural elements (1738 kg/3).
- It provides high specific strength.
- It has good pourability and is suitable for high-pressure mold castings.
- It can be turned and milled at high speeds. _
- It can be well welded under controlled atmospheric conditions. -

Different Transmission and Intermediate Transmission Manufacturers

In line with the researches carried out, the material use of different transmission and intermediate transmission manufacturers may vary under different conditions. The material used by a manufacturer is given below as an example.

Matoriala	and components
waterials a	ind components
Housing	
 cubic shap 	
	rey cast iron EN-GJL-250 (UNI EN 1561)
	machine finished
 on reques 	t: stainless steel
Covers and hu	bs
 material: g 	rey cast iron EN-GJL-250 (UNI EN 1561)
-	: internal centring tolerance h7, outer centring tolerance f7
 on reques 	t: stainless steel
Solid shafts	
 material: 	carbon steel C45E +H +QT (UNI EN 10083-2), hardened and tempered
 machining 	: cylindrical end, ground in tolerance j6, with key according to DIN 6885 Part 1
 on reques 	t: stainless steel
	shaft end with spline profile according to DIN 5480
	shaft end machined to drawing
Hollow shafts	
 material: 	input hollow shaft - carbon steel C45E +H +QT (UNI EN 10083-2), hardened and tempered
	output hollow shaft - alloy steel 39 NiCrMo 3 (UNI EN 10083-3), hardened and tempered
	cylindrical end, ground in tolerance H7, with keyway according to DIN 6885 Part 1
 on reques 	t: stainless steel
	bore with spline profile according to ISO 14

Bevel gears

- material: alloy steel 20 MnCr 5 (UNI EN 10084), case-hardened and tempered
- · toothing: GLEASON, with spiroidal tooth
- · running in with lapping in pairs

Seals

- oil seals in NBR, on request in VITON
- O-rings in NBR

Bearings

- taper roller bearings on solid output shaft and input shafts
- ball bearings on hollow input shaft for motor flange
 on request: larger bearings for higher radial and/or axial load capacity

Figure 10: Materials used in BG bevel transmission of Servomech company

10 / 11

CONCLUSION

In the automotive industry, a wide range of transmission and intermediate transmission body materials can be preferred. Determining certain priorities plays an important role in making this choice. For example, while aluminum alloys stand out in terms of lightness and heat permeability, cast iron materials seem to be more advantageous in terms of strength and cost.

The GGG50 cast iron material used in our company is relatively high quality, however, there are cast iron materials that are more resistant to corrosion. The most important thing to consider in this regard is to determine whether the correct proportion of alloying elements is used in this GGG50 material cast by the supplier. At the same time, in line with the process of spherification of graphites, there are a number of different metal elements that need to be added in the molten state of the lamellar graphite phase cast material. It is necessary to strictly control how accurately these issues can be done by the supplier company. Likewise, ETIAL-171 material used as aluminum alloy can be considered good also. While better anti-corrosion aluminum alloys are available, cost calculation is an important issue that should not be overlooked when choosing materials.

As shown in Figure 10, Servomech company used EN-GJL-250 as the body material, that is, the lamellar graphite cast iron material GG25 mentioned in the report. Although the selection of GG25 material, which is relatively poor quality, is an issue to be considered, the selection of 20MnCr5 as a gear material is also a factor that should not be overlooked in the material selection of the gears designed by us. Because while this other company is willing to compromise on the quality of the body material, it has definitely not compromised on the gear material.